Given an initial (resp., terminal) probability measure $\mu$ (resp., $\nu$) on $\mathbb{R}^d$, we characterize those optimal stopping times $\tau$ that maximize or minimize the functional $\mathbb{E} |B_0 - B_\tau|^{\alpha}$, $\alpha > 0$, where $(B_t)_t$ is Brownian motion with initial law $B_0\sim \mu$ and with final distribution --once stopped at $\tau$-- equal to $B_\tau\sim \nu$.
read more...↧